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We use the self-consistent mode coupling model for binary mixtures to inves-
tigate the influence of the mass-ratio (m2/m1) of constituent particles, where
subscripts 1 and 2, respectively, denote the smaller and bigger size particles, on
the dynamic transition. For the higher values of the ratio, m2/m1 \ 2, we find
that there is no significant change in the transition point. This is in qualitative
agreement with the simulation studies on the binary mixtures. However, for the
case of bigger particle mass, m2, being much smaller than that of the smaller
particle mass, m1, a significant change in the transition point is observed. The
dependence of the non-ergodicity parameters on the mass-ratio is also predicted
for different wave numbers. We also estimate the range in the vicinity of the
dynamic transition point where the square root cusp behavior of the non-ergo-
dicity parameter (NEP) dominates.
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1. INTRODUCTION

The self consistent Mode-Coupling Theory (MCT) (1, 2) is a useful tool for
understanding the slow structural relaxation in the supercooled liquids. In
the simple form the theory predicts a sharp transition of the supercooled
liquid from ergodic to non-ergodic phase. This so called ‘‘ideal’’ glass
transition occurs at a critical density (nc) at which the time scales asso-
ciated with the structural relaxation diverge. The long time limit of density
correlator, known as the nonergodicity parameter (NEP), f(q), is treated
as an order parameter for the transition. A nonzero value for f(q) signifies
the nonergodic state of the system. Subsequently (3) it was demonstrated



that in a compressible fluid, the sharp transition is smeared by the inclusion
of the coupling of current correlation with density fluctuations. This leads
to the ergodicity on a sufficiently long time scale even for n > nc. However
this sharp transition predicted in the simple form of the MCT strongly
effects the dynamics of supercooled liquid and has been investigated widely
through theoretical (4) and other techniques. (5) In the immediate vicinity of
the transition point, the NEP follows a cusp behavior, (6, 7)

f(q)=fc(q)+Aoh(q) E1/2+O(E), (1)

where superscript c indicates the NEP at the critical point of transition and
Ao is a positive constant factor. E=g/gc−1 is the parameter which repre-
sents the relative distance from the transition point where gc is the total
packing fraction (g) at the transition point. h(q) is the wavevector depen-
dent scaling amplitude calculated at the critical point. Usually the binary
system is described by three independent parameters: (a) The fractional
concentration of bigger particles x=n2/(n1+n2); (b) The size ratio a
(=s1/s2), of the diameters of the two species; and (c) The total packing
fraction g=g1+g2 where g1 and g2 are the packing fractions of the indi-
vidual species, i.e., gs=pnss

3
s/6, ns being the number of particles per unit

volume of sth species. We take s2, diameter of bigger species, as the unit of
length. A relatively less studied parameter is the mass-ratio, R=m2/m1,
of the particles of the two species. In earlier MCT models for the Glass
transition in a binary liquid the theoretical predictions do not depend on
this ratio. (8) The model studied in ref. 9, on the other hand, shows that the
dynamic transition predicted by the model is related to the mass-ratio of
the two species. The results from the theoretical model as obtained here
are in qualitative agreement with the molecular dynamics (MD) simula-
tions. (10, 11) We also study the range of validity of the square root cusp
behavior of the NEPs approaching the dynamic transition point from the
nonergodic state.
In the next section, we present a brief review of the MCT model for

binary systems and obtain the q dependent scaling amplitudes. In Section 3,
we present our results on hard sphere as well as Lennard-Jones systems.
We conclude the present work with a short discussion of our results in
Section 4.

2. MODEL FOR THE DYNAMICS OF A TWO COMPONENT FLUID

2.1. Nonlinear Fluctuating Hydrodynamics

We give an overview of the MCT for the binary mixtures. A detail
discussion of the model can be found in ref. 9. In a binary mixture the
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slow hydrodynamic modes correspond to the set of conserved variables in
the system. These conserved variables are the two partial densities rs,
(s=1, 2), total momentum density gF and the energy density. Using the
standard methods, (12) the time evolution of fluctuations of conserved
variables is described by the dynamical equations,

“rs

“t
+N ·5rs

r
gF6+cssŒ

dFu
drsŒ
=hs, s=1, 2 (2)

“gi
“t
+Nj

gi gj
r
+rsNi

dFu
drs
+Lij

dF
dgj
=fi, (3)

where the repeated indices are summed over—we will use this convention
throughout the paper. hs and fi, respectively, represent the noises that cor-
respond to the fluctuations in partial density of sth species and the ith
component of the total momentum density. Total free energy F=Fk+Fu.
Fk and Fu, respectively, represent the kinetic and interaction parts given by,

Fk=
1
2
F dx

g2(x)
r(x)

(4)

Fu=
1
ms

F dx rs(x) 5ln
rs

r0s
−16

−
1

2msmsŒ
F dx dx − cssŒ(x−x −) drs(x) drsŒ(x −), (5)

where ms and r0s represent the mass and average mass-density of the
sth species. cssŒ(x) is the direct correlation function between s and s −.
drs(x)=rs(x, t)−r0s is the fluctuation in the density of the sth species.
The bare transport coefficients Lij and cssŒ, respectively, refer to the viscous
dissipation and the particle interdiffusion in the system and are related
to the corresponding noises through the fluctuation dissipation relations.
Since total density r=r1+r2 satisfies the continuity relation, the noises
corresponding to the two density variables must satisfy h1+h2=0 and here
we have assumed (13) cssŒ(x)=N2c0(x)(−1) s+sŒ. For an isotropic system,
Lij can be splitted into the longitudinal and transverse parts as, Lij(q)=
qiqjC0+(q2dij−qiqj) z0, where Lij(q) is the Fourier transform of Lij(x).
C0 and z0, respectively, represent the bare longitudinal and transverse (13)

viscosities in the system.
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2.2. Dynamical Equations for the Correlation Functions

The mode-coupling equations for the binary mixture deal with the
2×2 matrix of the correlations of the density fluctuations defined as,

CssŒ(q, t)=
1
N

Odrs(q, t) drsŒ(−q, 0)P, (6)

where N represents the total number of particles in the system. From
Eqs. (2)–(5), we obtain a matrix equation,

[zI−M(q, z)] C(q, z)=q(q), (7)

for the partial density correlation function matrix C(q, z). Here C(q, z) is
the Laplace transform of the partial density correlation matrix C(q, t) and
I represents the identity matrix. qssŒ=asasŒSssŒ is the equal-time density cor-
relation function matrix. as=ms `ns and SssŒ is the partial structure factor
between s and s −. The matrixM(q, z) in Eq. (7) is given by,

M(q, z)=q2[in(q)+{z+iq2CR(q, z)}−1 D̃] q−1(q), (8)

where matrices nssŒ(q)=c0(q)(−1) s+sŒ and D̃ssŒ=r0xsxsŒ, with xs=r0s/r0 .
The renormalized longitudinal viscosity, CR, has two parts,

CR=C0+Cmc, (9)

where Cmc represents the mode-coupling contribution. Up to the one loop
order, the MC contribution is given by,

Cmc(q, t)=
Wq

2q2
F
dk
(2p)3

VssŒ(q, k) VllŒ(q, k1) ClŒsŒ(q, t) Cls(k1, t), (10)

where k1=q−k and the vertex function is given by,

VssŒ(q, k)=(asasŒ)−1 [q̂.k c̃ssŒ(k)+q̂.k1 c̃ssŒ(k1)]. (11)

The quantity Wq=; ssŒ DssŒSssŒ(q) where D11=n1A−1, D22=R2n2A−1, and
D12=D21=R2

`n1n2 A−1 with A=(n1+R2n2).

2.3. The Dynamic Transition to Nonergodic Phase

The long-time limit of the normalized density correlation functions
defined as, fssŒ(q)=CssŒ(q, tQ.)/`qssqsŒsŒ, is termed as the non-ergodicity
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parameter (NEP). From Eq. (7) one obtains, in the asymptotic limit of
long times, the following set of self-consistent equations for NEPs, (9)

fssŒ(q)=IssŒ(q) 5
Cq

1+Cq
6 , (12)

where Cq is the long time limit of the MC kernel given in Eq. (10). I(q) is
the structure dependent quantity,

IssŒ(q)=
DijSis(q) SjsŒ(q)

Wq[Sss(q) SsŒsŒ(q)]
1
2

. (13)

Equation (12) constitute a set of coupled nonlinear integral equations for
the non-ergodicity parameters fssŒ. The dynamic instability of the ideal
glass transition in the binary system is then located from the self-consistent
solution of Eq. (12) by iterative method in a similar manner as is done for
the one-component systems.
In the following expressions, we will represent the double index {ss −}

with a single index (a or b). With this notation, the variation in the NEP,
fqa, in the vicinity of the transition point can be written as,

fa(q)=f
c
a(q)+oa(q) ga(q), (14)

where oa(q) is defined as,

oa(q)=51−
fCa (q)
Iqa
62. (15)

oa(q) is a set of 4R numbers, R being the number of grid points in the
wavevector q. ga(q)Q 0 as the transition point is approached EQ 0.
Making a Taylor expansion of fa(q) around the ideal transition point and
using Eqs. (12) and (14), we obtain a matrix equation,

ga(q)=C
k, b
C (1)ab (qk) gb(k)+ C

bc, kp
C (2)abc(qkp) gb(k) gc(p)+EC

q
g+O(E

2, g2),
(16)

where the matrices C (1), C (2) are given by,

C (1)ab (qk)=5Iqa
dCq

dfb(k)
6 ob(k) (17)

C (2)abc(qkp)=5Iqa 3
1
2

d2Cq

dfb(k) dfc(p)
−
1
1+Cq

dCq

dfb(k)
dCq

dfc(p)
46 ob(k) oc(p).

(18)
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Here quantities within the square brackets in Eqs. (17) and (18) are
evaluated at the critical point and,

Cqg=g
dCq

dg
. (19)

Now a solution of Eq. (12) at the critical point involves solving Eq. (16) for
g=gc. Using the expansion ga(q)=E

1
2g (1)a (q)+Eg

(2)
a (q)+O(E

2) in Eq. (16)
and collecting the terms of leading order in E, we obtain the equation,

g (1)a =C
(1)
ab (qk) g

(1)
b (k). (20)

Since in the present work we are interested only in the leading order solu-
tion of Eq. (16), we will drop the superscript 1 from the following expres-
sions. Equation (20) is then put in to an eigenvalue problem in terms of the
stability matrix, C, as defined in Eq. (17). This is a 4R×4R matrix and the
eigenvector gb(k) has 4R elements. The numerical solution of Eqs. (20)
shows that the maximum eigenvalue l0 of the stability matrix is non-
degenerate and 0 < l0 [ 1. As the transition is approached, l0 Q 1. The
normalized left and right eigenvectors of the stability matrix corresponding
to the eigenvalue l0 are, respectively, denoted by êq and eq, and the nor-
malization constants are determined by the conditions,

C
q, a
(1+Cq)−1 êa(q) Ia(q) ea(q)=1 C

q
êa(q) ea(q)=1. (21)

In the close vicinity of the transition point, the leading order term O(E
1
2) in

Eq. (1) dominates over the higher order terms. Thus over the range where
cusp behavior is dominant, the vector ha(q) is obtained as,

ha(q)=oa(q) ea(q). (22)

This gives the q-dependence of the scaling amplitudes for the various NEPs
near the transition point. We test the range of E values where the leading
order cusp behavior (1) matches with numerical solution of the integral
Eq. (12).

3. RESULTS

3.1. Mass-Ratio and the Glass Transition

First we consider a hard sphere binary system characterized by the size
ratio a(=s1/s2) of the two species and the relative composition x. Here
0 [ a [ 1 and x=N2/N denotes the relative concentration of the bigger
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species in the mixture. In calculating the k-integral appearing in Eq. (10),
the upper cut-off is chosen at kg=40. For a fixed value of R=m2/m1,
where m2 and m1, respectively, denote the mass of bigger and smaller par-
ticles, the transition point depends upon the three independent parameters:
size ratio a, total packing fraction, g and x. In order to locate the transition
point for the HS system, we solve Eqs. (10) and (12) self-consistently using
the Percus–Yevick (PY) structure factor (14, 15) as input. We find that if
a [ 0.8 and R=1, there is a range of x over which the dynamic transition
does not occur up to fairly large g value. (9)

In order to study the R dependence of the dynamic transition, we have
chosen the two different sets of parameter values, namely x=0.7, a=0.8,
and x=0.5, a=0.83. Here the latter set of parameter values are same as
considered in the MD-simulation in ref. 10. We list our main findings below.

(i) For R \ 1, which implies that the bigger sized particles have
more mass than the smaller ones, no significant change in the transition
point is observed. The critical packing fraction gc for transition to the non-
ergodic phase is almost independent of R for the above mentioned range.
This result is in agreement with the trend seen in MD simulation of the
binary mixtures. (10, 11)

(ii) However, if the mass corresponding to bigger particles becomes
lesser than that for the smaller particles, i.e., R [ 1, a significant change in
the transition point is seen. In Fig. 1, we show the variation of transition

Fig. 1. Variation in the transition point with R (see text) is shown for two set of parameter
values x=0.7, a=0.8 (filled circles), and x=0.5, a=0.83 (open circles). Inset: same quantity
is shown for larger values of R.
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point with R for two different sets of thermodynamic parameters x and a.
Filled circles correspond to x=0.70 and a=0.80 while open circles are for
x=0.50 and a=0.83. In the inset, we have included the higher range of R
over which the transition density is almost constant.

Thus we observe that upon changing the value of R, the dynamic
transition remains unaffected as long as the bigger particles are heavier
than the smaller ones. But the scenario gets completely changed if the
smaller particles are made more heavier than the bigger ones. In that case
the transition density shifts to higher packing fraction.
We calculated the NEPs at the transition point for five different values

of R at fixed x=0.7 and a=0.8. This is shown in Fig. 2(a) for the smaller
species over a range 0 [ q [ 20. Here the three different curves correspond
to R=0.5 (solid), 0.8 (dash dot), and 1.0 (dashed). In the inset, we plot the
same quantity for R=1.5 (dash) and 10.0 (solid). Corresponding results
for the bigger particles are shown in Fig. 2(b). We find that over the large q
range the NEP for the smaller species shows an increasing trend as R is
decreased. Over the same q range an opposite behavior is seen in the bigger
particle case. In the smaller q range, however, the two NEPs show similar
behavior with R.
The behavior of the NEPs for the small and big particles described

above can be given a physical interpretation. The wave number and the
mass ratio dependence of the NEP is driven by the influence of the struc-
ture on the dynamics. As the mass ratio is increased the bigger spheres

Fig. 2. (a) Critical NEPs corresponding to the smaller species, f11(q), are shown at three
different values of R=0.5 (solid), 0.8 (dash dot), and 1.0 (dashed), 0.8 (dash dotted), and 0.5
(dotted). Here parameter values x=0.7, a=0.8. In the inset we show results for R=1.5
(dash) and 10.0 (solid). (b) NEPs for the bigger particles are plotted at the same parameter
values as in Fig. 2(b). Inset shows results for same R values as in the inset of Fig. 2(b).
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being heavier have a higher likelihood to get jammed and hence the extent
of corresponding nonergodicity gets enhanced. The smaller spheres as a
result get jammed in the cages formed by the frozen structure of bigger
spheres. So over longer length scales, i.e., small q values, the tendency of
the nonergodicity parameter for the smaller species is same (to increase
with R) as that of the bigger spheres. However over shorter length scales
the small (lighter) spheres move around relatively easily between the bigger
spheres indicating a fall in the nonergodicity parameter for large q values.
We also observe that this variation in the NEPs slows down as R is
increased and becomes almost independent of it for R > 10.

3.2. Scaling Analysis Near the Transition Point

Here we present our results on the scaling near the transition point.
We also test the range of E where the leading order cusp behavior of the
NEP is dominant. We consider a mixture with a=0.8, x=0.7, and R=1.
From the numerical solution of the matrix Eq. (20) together with the con-
ditions (21), we obtain normalized eigen vectors êq and eq corresponding to
the eigen value l0=1. The wavevector dependent scaling amplitudes ha(q)
are then obtained from the matrix equation (22). The results are shown in
Figs. 3(a) and 3(b) for the smaller and bigger particles, respectively. Inset
shows results for the corresponding NEPs. From Fig. 3(a), we see that the
amplitude hq corresponding to the smaller particles go to very small values
over some intermediate range of wavevector q lying between 6.0 [ q [ 7.0.
This is due to the structure dependent quantity I(q) appearing in Eq. (12).
The same behavior is seen in the NEP of the smaller particles and is shown
in the inset of the figure. Similar behavior is found in case of bigger par-
ticles as shown in Fig. 3(b). However this intermediate q range over which
NEPs fall to small values disappears as one moves toward the one compo-
nent limit, i.e., xQ 0 or 1. (9) The results for the scaling amplitudes pre-
sented here reduce to the one-component results (7) under the appropriate
limits.
In order to check the E range over which the scaling (1) is valid, we

calculate the quantity f̄ssŒ(q)=DfssŒ(q)/hssŒ(q), where DfssŒ(q)=fssŒ(q)−
fcssŒ(q), as a function of E. Thus if the scaling proposed in Eq. (1) is valid,
we expect all the points for different q values to fall on a single curve,
f̄(q)=AE1/2, independent of the species. The results are shown in Fig. 4 for
the q values around the bigger particle structure factor peak. The circles
and triangles denote f̄(q) for the bigger and smaller particles, respectively.
From the Fig. 4, we find that, indeed, all the points below E=0.001 do fall
on the curve f̄(q)=AE1/2, which is shown as a straight line with slope 0.5
and A=2.01. This result shows that the cusp behavior predicted by the
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Fig. 3. (a) Wavevector dependent scaling amplitude is shown for smaller species h11(q) at
x=0.7, a=0.8, and g=0.574 (transition density). Corresponding NEP is shown in the inset.
(b) Wavevector dependent scaling amplitude for the bigger particles are shown at the same
parameter values as in Fig. 3(a). Inset shows the corresponding NEP.

theory is observable only within 0.1% of the transition point. Using con-
stant A, as obtained from Fig. 4, and the theoretical results for h(q), we
calculated DfssŒ(q) from Eq. (1). For comparison, we have shown both the
theoretical (solid line) and numerical results (dots) for DfssŒ(q) in Figs. 5(a)
and 5(b) for smaller and bigger particles, respectively. The two results
match only for very small values of E [ 0.001. Dotted lines in the figures
show the results with the linear order term (’ O(E)) included in Eq. (1).
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Fig. 4. Function f̄(q) (see text) is plotted as function of E for different q values that lie
around the first peak of the bigger particle structure factor. Triangles and circles denote the
smaller and bigger particle results, respectively. Straight line represents the fit, f̄(q)=AE1/2

with A=2.01.

This shows that beyond E=0.001, the next higher order term starts domi-
nating over the leading term of cusp behavior.

3.3. Absence of the Transition in LJ Potential

The model described above in Section 2 is also useful for studying
glass transition in systems with other interaction potentials. Extensive
simulation study has been done on the binary Lennard-Jones (LJ) system
characterized by x=0.8 and a=0.88 with mass-ratio unity. (16) For this
system, a dynamic transition at temperature Tc=0.435 was predicted from
the simulation studies. (17) This critical temperature was obtained from a
power law fit to the self-diffusion coefficient at low temperatures. In the
present theoretical calculations with LJ system the simulation results for
the static structure factors (16) as well as those from Integral equations (18) are
used. From the self-consistent solution of Eqs. (10) and (12), we find that
the model equations do not show any transition up to the lowest tempera-
ture T=0.466 investigated in the simulation studies. (16) This aspect of the
mode coupling models is new since the earlier models (19) when used with
the same structure factors show a dynamic transition at a much higher tem-
perature Tc=0.922. (20) In order to study the lower temperatures, we used
integral equation results (18) for the static structure factors. With these
structure factors as an input, we solved the NEP equations (12) up to as

Results from a Self Consistent Mode Coupling Model 1119



Fig. 5. (a) Function Df(q)=f(q)−fc(q) is plotted for smaller species over a range of E
values at q=8.0 (peak in smaller particle structure factor). Dots are the numerical results and
solid line represents Eq. (1) with A=2.01. Dotted line represents the fit with higher order
term (O(E)) included in Eq. (1). (b) Same as in Fig. 5(a) but for bigger particles at q=7.80.

low as T=0.3 without any freezing in the system. On the other hand, for
a some what similar HS system (with same x and a values) the transition
occurs at gc=0.534. Since structure factor is the only input required in
determining the transition point, we focus on the respective structures
(S(k)) to look for a possible reason for this very different behaviors in the
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Fig. 6. Structure factors S11 and S22 (inset) for x=0.8 and a=0.88: dotted and dashed
curves, respectively, represent the simulation data of ref. 16 and the integral equation solu-
tion (18) for the LJ system at T=0.5. Solid line is the Percus–Yevick results (14, 15) for the HS
system at gc=0.534.

two systems. We find that bigger particle structure factors, S22, for the two
systems are very similar while the structure factors corresponding to the
smaller particles, S11, are quite different. In Fig. 6, we show the structure
factors S11 for the HS system (solid line) at g=0.534 and for LJ system of
Kob–Andersen mixture at T=0.50. We show both the simulation results
(dotted) as well as that obtained from integral equations (dashed). The
inset shows the corresponding results for S22. Thus it is the structure of the
smaller species which prevents the freezing of the LJ system at the lowest
temperature investigated.
The present work on the LJ system is motivated by the simulation

works of Kob et al. (16, 17, 20) in which the authors have considered a binary
system in which masses for the two species are equal. We have therefore
considered a fixed mass-ratio, R=1 in investigating the LJ system.
However, we believe that both the structure factors and the mass ratio have
a role to play in deciding the transition point.

4. DISCUSSION

In the present work, we have used a recently proposed Mode-Coupling
model for the glass transition in a two-component liquid to study the
effect of mass-ratio of its constituent particles on the dynamic transition

Results from a Self Consistent Mode Coupling Model 1121



predicted by the model equations. In the earlier mode coupling models (19)

for the glass transition the dependence of the transition point on the mass-
ratio of the two components is absent. This dependence of the dynamic
transition on the ratio R in the present model follows in a very natural way
from the consideration of the proper set of equations of motion for the
conserved variables. These equations are obtained following the same
approach as was done for MCT in one component systems (3) or for the
linearized dynamics of a two component system. (21) In the case of the
binary mixtures, the motion of the smaller particles in the matrix of
the bigger particles satisfy both conservation of mass and momentum
which plays crucial role in freezing of the time scales of relaxation. For a
mixture with fixed values of the relative abundance x and size ratio a, our
result shows that no significant change in the transition density occurs for
R \ 2. A similar trend is also seen in the MD simulation of binary mix-
tures. (10, 11) However for the ratio R smaller than unity, we find that transi-
tion point continuously shifts toward the higher densities. For a mixture of
equally abundant species, if the bigger sized particles are lighter than the
smaller particles, a considerable change in the dynamics occurs shifting the
dynamic transition point to the higher densities.
The influence of the mass-ratio on the dynamical properties of a two-

component liquid has already been observed earlier in computer simulation
studies (22) and was subsequently analyzed in theoretical works on binary
mixtures. (23, 24) However these studies were done for low densities and the
mass of smaller particle was much smaller than that of the bigger one. In
the present work we showed that the mass-ratio of particles of two differ-
ent species will influence their relative motion and therefore will have an
effect on the dynamic instability approaching high density. This ratio starts
showing the influence when smaller sized particles have mass which is more
than that of the bigger particles.
The physical significance of the observed mass ratio dependence can

also be interpreted in the following manner: In case of a binary mixture
with unequal masses for two species the process of jamming has to be con-
sidered with respect to the motion of one species (less abundant type) in the
matrix of the other. We shall refer the species with lower mass and higher
mass as ‘‘lighter’’ and ‘‘heavier,’’ respectively. Let us consider the case
where the bigger sized spheres are 80% and smaller ones are 20% in
numbers. In such a situation, if the bigger sized particles are much lighter
(i.e., R° 1) then they bounce off with higher speed in collisions with
smaller sized particles and can easily swim through the matrix of the
smaller (heavier) species thus allowing fluidity to be maintained till very
high packing fraction. On the other hand if the big particles are much
heavier (R± 1) the smaller sized particles (lighter) get trapped quite easily
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in the sea of bigger particles. Thus for higher values of mass ratio the
jamming occurs easily.
The situation however gets reversed if the bigger sized particles are

only 20% and the smaller ones are 80%. In this case if the bigger sized
particles are light (R° 1) they are unable to move through the sea of
small (heavier) spheres and easily get trapped causing the jamming. If, on
the other hand, the bigger particles are much heavier (R± 1) they can still
push through the sea of smaller ones (lighter) and thus delay the jamming
process. This physical argument can be made more clear from Fig. 7, where
we have shown the variation in the transition point with R for x=0.8
(squares) and 0.2 (circles) at the same size-ratio, a=0.8. Here for the larger
concentration (80%) of the smaller particles, at the same size-ratio, an
opposite behavior is observed. Now the transition density is almost con-
stant for low mass-ratio and shifts to higher values as R is increased much
beyond 1.
The MCT instability is a dynamic one occurring usually in the higher

temperature range and causes a qualitative change in the dynamics (Tc).
This is distinct from the models where a transition occurs due to an
entropy crisis (Tg). Here (MCT) development of long relaxation times
solely come from the dynamics of the fluid with structural input (initial
condition). It should be noted that Eq. (12) in the present manuscript for
the NEPs depends only upon the mass-ratio (R) of two species and does
not depend on the individual masses of the two particles. The influence

Fig. 7. Transition density, gc, is plotted with R for two different values of x=0.8 (squares)
and 0.2 (circles) at a=0.8.
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of the ratio R on the dynamics as seen here cannot be simply removed
through a choice of variables as was recently proposed for a molecular
liquid. (25) The ideal dynamic transition as defined by the nonzero values of
the NEPs is not observable in a MD simulation. However it is always pos-
sible to make an estimation of the NEPs through the von Schweidler power
law fit to the density correlation functions over the intermediate time
scales. Therefore in a MD simulation, it is easier to test the theory predic-
tions for the mass-ratio dependence of NEPs than the dynamic transition
itself.
For the LJ system our model equations show that dynamic transition

is absent till low temperature. Here one has to consider more closely how
the ‘‘transition point’’ is obtained in the computer simulation works. In the
simulation work of Kob et al., a prediction for dynamic transition was
made by fitting a power law form to the diffusion data at low tempera-
tures. The extrapolated temperature where the diffusion coefficient
appeared to go to zero was taken to be the transition point.
Finally, studying the mass-ratio (R) dependence of the transition

point in LJ system requires calculation for the transition point at different
temperatures. Therefore we need structure factors at all temperatures.
The structure factor for the LJ system obtained through the solution of the
integral equations is also not very reliable at low temperatures. In the
present work we have therefore not done such an analysis for the LJ
system. However we do not expect any qualitative change in the depen-
dence of the transition point on the mass ratio R in this case as compared
to the hard spheres.
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